加州洛杉矶分校,陶轩之正在招待来自麻省跟牛津大学的哈维·古斯和詹姆斯·梅纳德跟张远堂三位数学家。
显然三位客人都是学术界大佬。
尤其是詹姆斯·梅纳德,因为其在解析数论领域所做出的贡献,特别是针对素数的研究,刚刚在三年前获得了菲尔兹奖。
再加上陶轩之也是曾经最年轻的菲尔兹奖得主之一,如果不是彼得·舒尔茨的话,他现在依然是最年轻的菲尔兹奖得主。
所以这次见面规格很高,起码有两位菲尔兹奖得主。
四人今天聚在一起的原因则是最近哈维·古斯和詹姆斯·梅纳德近期在预发布网站上发表的一篇论文:《狄利克雷多项式大值估计新进展》。
用陶轩之的评价就是这篇论文在解析数论领域取得了重要突破,并在证明黎曼猜想这条漫长的路上前进了一大步。
最重要的是,陶轩之认为这是几十年来第一次在黎曼猜想问题上实现了实质性的突破。同时还为黎曼猜想的研究增添了新的工具跟思路。
毫无疑问这是极高的评价。哪怕目前这篇论文还在同行审议阶段。于是干脆就把两位作者都请了过来。
张远堂则是因为他在素数研究方面的成果跟地位。这类数学家小范围内的讨论一直都有。毕竟大家见面还算方便。
刚刚四个人才经历了三个多小时的头脑风暴,主要是陶轩之跟张远堂提出一些疑问,然后两位作者进行一些解释,甚至是修改。
比如第7节和第8节的中,63页引用了一个之前并不不存在的方程,引理12.3之前缺失了一个引用,突然出现的某个函数,没有在论文中定义,某个步骤缺少有效的理由……
好吧,看上去一些问题比较离谱,但用过电脑写论文的就知道,一些小瑕疵是难以避免的。
只要不是逻辑等级的错误,很多错误是难以避免的。尤其是数论方面的论文,往往需要反复修改,这时候因为论文作者当时的状态,错漏几个公式其实很正常。
这也是许多论文审稿人会跟发布者反复拉扯的原因,很多时候就是基于这种科学范式的严谨性。
尤其是数学上,一般指出论文关键步骤存在伪证才算是质疑。指出这种小问题,就属于探讨。
就好像当初怀尔斯证明费马大定理时编辑部安排了六位审稿人,审稿期间发现了大量问题,好在大多是怀尔斯马上就能澄清的小问题,当然如果不能澄清的话那就是大问题了。