读书阁 > 历史军事 > 我老婆是书香闺秀 > 第四十六章 计算

第四十六章 计算(1 / 3)

应该说,微分和积分为什么互为逆运算,而且为什么通过反求导就能求出区域面积,这大概是在学习微积分的时候,很多人最难理解的一个点。

甚至曾经在很早之前,大家都把微分和积分看作是两个互不关联,毫不相关的东西去看待,直到后面出现了牛顿和莱布尼茨。

考虑到证明的过程是很难直观去理解的,所以李纵才举了这么一个或许并不太严谨,但却意外好懂的例子,把求积分的图,当成是瞬间速度变化的图。

然后求从a到b时间之内,到底走过了多少路程,这是不是就是反求导之后,用大写的f代表原函数,黄色区域的面积就等于f(b)-f(a)。

这正是计算积分十分重要的一个公式,将连续的需要求和的一条条铅垂线的过程,转变成了只需要代入边界的值,一减就能求出面积。

见两人还在犹豫,李纵也是把路程等于速度乘以时间,面积等于底边乘以高,两者都是乘法的这么一个过程写了出来,道:“其实我们不必纠结于为什么路程可以看成是面积。”

“我们只需要知道他们都同样是乘法运算,而且,都是函数关于一滴滴的单位之内,会得到某个值就行了。”

“而且,如果反过来理解,求积分的这个图,用微分去表述,就可以是,在一滴滴的时间之内,面积的变化率。”

见两人还在沉思,李纵便继续道:“那么,假设这种想法是对的,我们已经得知,这两种运算存在着一种互逆的关系,那么,我们可以怎么使用这种关系?”

“是不是就可以求积分了,积分原本是要把很多很多的铅垂线的面积加起来,正常来说,我们人是办不到的,但是如果能把它转换为微分时的原函数,积分是不是就可以计算了。”

“直接代入两个边界的点,一减,答案不就出来了。b点的里程,比如说15里,减去a点的里程,比如说10里,一减,中间的5里,就是我们走过的路程。”

“那么问题来了!这个积分的函数,跟它微分时的原函数,到底存在着一种什么样的关系。”

“或者说,我现在已经知道了积分的函数了,就是等于y=2x,那么,微分时的原函数,是什么?所以是不是就是一次从微分的结果,反推微分的开头的这么一个过程。”

“那接下来我们便尝试着拿一个例子,来求一次微分。”

“比如说原函数y=x²,根据刚刚微分的定义,是不是就可以有以下这个式子:”

最新小说: 汉家学霸 出生后就被内定为皇后 藏渊沉凰 攻略女帝:太监最风流 被捉奸的我,成了正主 穿成反派权臣的黑月光 乱葬岗惨死后,女战神强势归来 千古一帝,秦王扶苏 三国之黄巾打工人 明朝第一巨寇