生都认识这个数字三角形,杨辉三角谁不认识,参加过数联、奥数竞赛的中学生都知道杨辉三角的规律性。
沈奇当然懂这个数字三角形,这个数字三角形在中国叫杨辉三角,在西方叫“帕斯卡三角阵”,分别以中西两位数学家的名字命名。
杨辉三角的规律性不难被观察出来,三角阵中的每个数是其上方紧邻两数之和。
依此类推,沈奇很快算出了第1024行所有数字之和为一百二十七万八千三百二十四。
第二题的第一小题简直就是送分题,所以分值不高,才5分。
难的是第二小题,分值为15分。
正向推导第4201行中任意一数为分数或负数的情形都适用,这就很让人头疼了,无从下笔啊,根本找不到一丝线索。
沈奇想要逆推,第2小题要求证明的内容,一定是能找到一条公式、定理或推论做为依据的。
“伯努利的排列组合或者是概率论?不对,不像。”
“韦达的三种特殊类型方程展开式?也不是。”
“玩这种纯粹的数字游戏,费马是顶级高手,没错,应该是费马,他跟帕斯卡是好基友,两人经常书信往来,而这题是基于帕斯卡三角阵出的题。”
“费马这家伙一生中提了几百个假设,99%的假设都被后人证明是成立的,他被称为‘业余数学之王’,但我绝不相信费马的数学水平是跟我一样的业余级。”
“头大啊,费马的273个假设,我最多只研究过70个,到底是哪一个呢?是否触及到了我的数学知识盲区?”
沈奇放下圆珠笔,闭目养神,绞尽脑汁想办法。
副会长晃悠晃悠又晃到沈奇身后,他露出得意笑容,心中很满意沈奇现在这种状态:“小伙子,即便你能解出第一题几何题,熟知杨辉三角的规律,那又能如何?我出的第2小题,难度超出你的想象力了吧?”
就在这时,沈奇忽然睁开双目,双目炯炯有神:“我想到了,这是费马的(1+a)推论!他说这个推论肯定是成立的,不必加以证明,但他死后100年,他的法国同胞证明了这个推论。”
思路来了,思路来了啊!
沈奇的灵感如泉水涌出,他拿起圆珠笔,准备解题。
就在即将动笔之时,沈奇莫名感到背后袭来一股寒意,跟刚才一样一样的。
沈奇回头一瞥,非常不高兴:“卧槽,又是你!你又是路过?”
副会长