”
沈奇一个激灵,他忽然间捕捉到了一丝灵感,稍纵即逝,若即若离。
这种感觉似曾相识,这个月初的国内数联国决压轴题,就是这种过电般的灵感救了沈奇,田老师救了沈奇,他秀了一把楔形文字六十进制证明根号2为无理数,秀到了国决冠军。
“倒回去,倒回去。”
沈奇在脑海中回放刚才的胡思乱想。
“张老师啊,几个月前我去你办公室,你问我自学到哪里了。”
“我说,我学到了凯莱转折矩阵和魏尔斯特拉斯二次型。”
“虽然表面上看数学不过是一种语言或工具,但它大多数生动的概念能对新的思想领域提供钥匙。”
“而行列式和矩阵则完全是数学语言上的改革,沈奇你必须深刻认识到这点,才能在代数上有所作为。”
沈奇笑了,非常开心,天无绝人之路。
上次田老师救了他,这次张老师救了他。
其实沈奇最该感谢的是他自己,在困境中他从未选择放弃,数学很多时候需要执着甚至疯魔,他和他最后的倔强救了他。
当年装逼用的凯莱转折矩阵以及矩阵论,终于在最关键的时刻发挥作用。
不管这个数字列阵是什么妖魔鬼怪、是不是群,都逃不过我沈奇手中的照妖镜---矩阵。
能领悟或者翻译群论的工具,是矩阵。
根据题面数字列阵:
11
196884196883+1
2149376021296876+196883+1
864299970842609326+21296876+2*196883+2*1
沈奇写出一个矩阵同态:
a(gi*gj)a(gi)* a(gj)
将其展开为矩阵表达:
|ag-0|
|ai-0|
|0-aj|
这种矩阵语言看上去很复杂,但表达的意思非常简单直接,即一个群g的矩阵表示,是g的元素g到一组固定阶的非奇异方阵a(g)的一个同态映射。
再说简单一点,群是非常难搞懂的一组复杂密码,而矩阵是破译密码的母本之一。
唯一的要求是,你必须熟练掌握各种解码手段,越多越好。
如果能用矩阵描述这个数字列阵,说明它是某种群,否则不是。