路径,现在,我将之公布。”
“基于前面几条路径得到的推论,以及ζ函数零点性质的方程组,我们推导出了一个核心表达式,请看屏幕。”
屏幕上的式子是:
ζ(s)∑(0≤n≤t*-a)(n+a)^-1/2-it+o((t*)^1/2(1+t)^-1),0≤t≤t
报告厅内一半以上的观众站了起来,他们是第一次看到这个式子,数学家的直觉告诉他们,这个式子不寻常。
“根据沈氏双生匹配法,我们可以清楚的知道在零点时,这个式子完全是通过ξ(s)这个整函数变化得到的,并且它在形式上仍然是整函数。”
沈奇展开双臂,拥抱全世界:“也就是说,s在遍历复平面的过程中,恰巧不偏不倚,不多不少处在某个非显然零点位置上,即与该非显然零点重合,rt第三表达式证得!黎曼定理的补充定理成立!”
关于rt第三表达,沈奇用了半年多的时间做铺垫。
3月份沈奇抛出rt第三表达式的概念,8月初沈奇在意大利发表框架性报告,二十天之前沈奇公布了三条路径。
此刻,沈奇完成最后一击,他8页ppt的第四条路径最终求得第三表达式。
喔!
台下的数学家们激动了,沈奇完成了黎曼猜想+黎曼定理+补充定理的全套研究!